Grade 8 TEKS Companion Guide

A review guide for the Grade 8 Mathematics Texas Essential Knowledge and Skills **Student Edition**

Authoring Team:

Dr. Paul Gray, Cosenza & Associates, LLC, Dallas, TX Dr. Kelli Mallory, Cosenza & Associates, LLC, Frisco, TX

Editorial Team:

Ian Molenaar, Cosenza & Associates, LLC, Dallas, TX Gary Cosenza, Cosenza & Associates, LLC, Dallas, TX Judy Rice, Independent Consultant, Houston, TX

Layout Design:

Five J's Design, Aubrey, TX

© 2018 by Cosenza & Associates, LLC.

All rights reserved. No part of this work may be reproduced or transmitted by any means, electronic or mechanical, without prior written permission from Cosenza & Associates, LLC. No part of this work may be electronically stored, archived, or otherwise used without prior written permission from Cosenza & Associates, LLC. Requests for permission to make copies of any part of this work should be addressed to Cosenza & Associates, LLC, P.O. Box 190813, Dallas, Texas 75219.

Printed in the United States of America.

ISBN 978-1-948709-01-9

1 2 3 4 5 6 7 8 24 23 22 21 20 19 18 17

SLOPE AS A RATE OF CHANGE

The student is expected to use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y-values to the change in x-values, $\frac{y_2-y_1}{X_2-X_1}$, is the same for any two points (x_1, y_1) and (x_2, y_2) on the same line.

TELL ME MORE...

The slope of a line is a measure of the steepness of its graph. In the graph shown, line f has a slope of $\frac{1}{2}$, meaning that the ratio of the change in the vertical direction to the change in the horizontal direction is $\frac{1}{2}$.

Consider three points along line f: A (-8, 1), D (2, 6), and H (6, 8). Let \overline{AD} be the hypotenuse of right triangle AJD and \overline{DH} be the hypotenuse of right triangle DKH as shown in the graph.

- The vertical distance between points A and D is represented by \overline{JD} , which has a length equal to the difference of the y-coordinates of D and A: 6 1 = 5.
- The horizontal distance between points A and D is represented by \overline{AJ} , which has a length equal to the difference of the x-coordinates of D and A: 2 (-8) = 10.

The horizontal distance between points D and H is represented by \overline{DK} , which has a length equal to the difference of the x-coordinates of H and D: 6-2=4.

The equivalent ratios represent the slope of line f. For any two points on line f, (x_1, y_1) and (x_2, y_2) , the slope of line f is the ratio of the vertical distance $(y_2 - y_1)$ to the horizontal distance $(x_2 - x_1)$ between the two points.

EXAMPLES

EXAMPLE 1: Triangles ABC and DEF are similar right triangles. Write a proportion that could be used to show that the slope of \overline{DF} is the same as the slope of \overline{AC} .

A (-7, 9)

C (0, -5)

D (-4, 3)

F (-1, -3)

$$\frac{\text{vertical distance}}{\text{horizontal distance}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 3}{-1 - (-4)}$$

Slope of
$$\overline{DF} = \frac{-3 - 3}{-1 - (-4)}$$

$$\frac{\text{vertical distance}}{\text{horizontal distance}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - 9}{0 - (-7)}$$

Slope of
$$\overline{AC} = \frac{-5 - 9}{0 - (-7)}$$

Slope of \overline{DF} = Slope of \overline{AC}

$$\frac{-3-3}{-1-(-4)}=\frac{-5-9}{0-(-7)}$$

$$\frac{-6}{3} = \frac{-14}{7}$$

YOU TRY IT!

Triangle *ABC* and *BDE* are similar right triangles. Write a proportion using the coordinates of points A, B, and D to show that the slope of \overline{AB} is equal to the slope of \overline{BD} .

Slope of \overline{AB} = Slope of \overline{BD}

EXAMPLE 2: The table contains some points contained on line k. Triangle FGM is similar to triangle HJN. Write a proportion to show that the slope of \overline{FG} is equal to the slope of \overline{HJ} .

	x	y
F	-8	6
G	-4	5
Н	4	3
J	8	2

STEP 1 Use the coordinates of F and G to write the slope of \overline{FG} as the ratio of the vertical distance to the horizontal distance. Let $F(-8, 6) = (x_1, y_1)$ and $G(-4, 5) = (x_2, y_2)$.

$$\frac{\text{vertical distance}}{\text{horizontal distance}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 6}{-4 - (-8)}$$

Slope of
$$\overline{FG} = \frac{5-6}{-4-(-8)}$$

STEP 2 Use the coordinates of H and J to write the slope of \overline{HJ} as the ratio of the vertical distance to the horizontal distance. Let $H(4,3) = (x_1, y_1)$ and $J(8,2) = (x_2, y_2)$.

$$\frac{\text{vertical distance}}{\text{horizontal distance}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 3}{8 - 4}$$

Slope of
$$\overline{HJ} = \frac{2-3}{8-4}$$

A proportion is two or more equivalent ratios. Write a proportion setting the ratios for each slope equal to each other.

Slope of
$$\overline{FG}$$
 = Slope of \overline{HJ}

$$\frac{5-6}{-4-(-8)}=\frac{2-3}{8-4}$$

$$\frac{-1}{4}=\frac{-1}{4}$$

MAKE A NOTE ...

Suppose that M (4, 8) and N (-2, 5). How does the slope of \overline{MN} compare to the slope of \overline{NM} ?

PRACTICE

Use the graph to answer questions 1-3.

- **1.** Write a ratio to show the slope of \overline{AB} .
- **2.** Write a ratio to show the slope of \overline{RT} .
- **3.** Complete the following statement using an inequality or equality symbol.

Slope of \overline{AB} ____Slope of \overline{RT}

Use the graph to answer questions 4-6.

- **4.** What ratio represents the slope of the hypotenuse of triangle *JKL*?
- **5.** What ratio represents the slope of the hypotenuse of triangle *EFG*?
- **6.** What is the relationship between the two slope values?
- **7.** Triangles LMN and TUV are similar right triangles. Which proportion shows that the slope of \overline{LN} and the slope of \overline{TV} are equal?

$$\mathbf{B} \quad \frac{-10-2}{-2-0} = \frac{-5-6}{0-10}$$

c
$$\frac{-10-0}{-2-2} = \frac{-5-10}{0-6}$$

D
$$\frac{-2-0}{-10-2} = \frac{0-10}{-5-0}$$

8. Triangle FGH and GJK are similar right triangles. Write a proportion using the coordinates of F, G, and J to show that the slopes of \overline{FG} and \overline{GJ} are equal.

9. Triangles KJL and PQR are similar right triangles plotted along line h.

Which statement is true?

- F The slope of the hypotenuse of *JKL* is less than the slope of the hypotenuse of *PQR*.
- **G** The slope of the hypotenuse of *JKL* is the same as the slope of the hypotenuse of *PQR*.
- **H** The slope of the hypotenuse of *JKL* is greater than the slope of the hypotenuse of *PQR*.
- **J** The slopes of the hypotenuses of *JKL* and *PQR* have no relationship.