

## Using Linear and Absolute Value Functions

Elaborate – Answer Key

Directions:

tions: The absolute value parent function is y = |x|. The parameters a, b, c, and d, which represent real numbers can be used to transform the absolute value parent function: y = a|x|, y = |bx|, y = |x - c|, and y = |x| + d. Use your graphing calculator to graph the four functions shown in each box on the same screen. Graph the first function, Y1, in bold or a different color. Use the graphs and tables of values on the graphing calculator to answer the questions next to the box.

### Part 1: Investigating a

- Y1 = |*x*|
- $Y^2 = 2|x|$
- Y3 = 4|x|
- Y4 = 5|x|

1. What happens to the graph of  $y = \alpha |x|$  when the value of  $\alpha$  increases?

As a increases, the graph becomes vertically stretched because the y-values are moved farther from the x-axis.

|                                            | Х  | Y1 | Y 2 | Yз | Y4 |
|--------------------------------------------|----|----|-----|----|----|
| · · · <b>∖ ∖ ·∖ † /· /</b> · / · / · · · · | -5 | 5  | 10  | 20 | 25 |
| <b>∖ \\</b> ↓// /                          | -4 | 4  | 8   | 16 | 20 |
|                                            | -3 | 3  | 6   | 12 | 15 |
|                                            | -2 | 2  | 4   | 8  | 10 |
|                                            | -1 | 1  | 2   | 4  | 5  |
|                                            | 0  | 0  | 0   | 0  | 0  |
| +                                          | 1  | 1  | 2   | 4  | 5  |
|                                            | 2  | 2  | 4   | 8  | 10 |
|                                            | 3  | 3  | 6   | 12 | 15 |
|                                            | 4  | 4  | 8   | 16 | 20 |
|                                            | 5  | 5  | 10  | 20 | 25 |

- $Y_1 = |x|$
- $Y_2 = 0.5|x|$
- Y3 = 0.25|x|
- Y4 = 0.1|x|
- 2. What happens to the graph of y = a|x| when the value of a decreases?

As a decreases, the graph becomes more vertically compressed because the y-values are moved closer to the x-axis.

|                                        | Х  | Y1 | Y2  | Yз   | Y4 |
|----------------------------------------|----|----|-----|------|----|
| N + N × + + + + / + + /                | -5 | 5  | 2.5 | 1.25 | .5 |
|                                        | -4 | 4  | 2   | 1    |    |
|                                        | -3 | 3  | 1.5 | .75  | .3 |
|                                        | -2 | 2  | 1   | .5   | .2 |
|                                        | -1 | 1  | .5  | .25  | .1 |
|                                        | 0  | 0  | 0   | 0    | 0  |
| · · · · · · <del>·</del> · · · · · ·   | 1  | 1  | .5  | .25  | .1 |
|                                        | 2  | 2  | 1   | .5   | .2 |
|                                        | 3  | 3  | 1.5 | .75  | .3 |
| · · · · · · · <del>·</del> · · · · · · | 4  | 4  | 2   | 1    | .9 |
|                                        | 5  | 5  | 2.5 | 1.25 | .5 |

- Y1 = |*x*|
- $Y_2 = -|x|$
- Y3 = 3|x|
- Y4 = -3|x|
- 3. What happens to the graph of  $y = \alpha |x|$  when the value of  $\alpha$  changes signs from positive to negative?





| <ul> <li>Y1 =  x  + 1</li> <li>Y2 = - x  + 1</li> <li>Y3 = 3 x  + 1</li> <li>Y4 = -3 x  + 1</li> </ul> | 4. | What happens to the graph of $y = a  x  + 1$ when the value<br>of a changes signs from positive to negative?<br>When a changes signs, the graph is reflected across the line $y = 1$ .<br>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Part 2: Investigating b<br>• Y1 =  x                                                                   | 5. | What happens to the graph of $y =  bx $ when the value of b                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| • $Y_2 =  2x $                                                                                         |    | As b increases, the graph becomes more borizontally compressed                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| • $Y_3 =  4x $                                                                                         |    | because the x-values are moved closer to the y-axis.                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| • $Y4 =  10x $                                                                                         |    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    | -5 5 10 20 50<br>-4 4 8 16 40                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    | -3 $3$ $6$ $12$ $30$                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    | 5 5 10 20 50                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| • $Y1 =  x $                                                                                           | 6. | What happens to the graph of $y =  bx $ when the value of b decreases?                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| • $72 = [0.3X]$                                                                                        |    | As b decreases, the graph becomes more horizontally stretched                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| • $F3 = [0.25x]$<br>• $V4 = [0.1x]$                                                                    |    | because the x-values are moved farther from the y-axis.                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| $\bullet  14 = [0, 1X]$                                                                                |    | $X Y_1 Y_2 Y_3 Y_4$                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    | 2         2         1         .5         .2           3         3         1.5         .75         .3                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|                                                                                                        |    |                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |

- Y1 = |x 3|
- $Y_2 = |-(x-3)|$
- Y3 = |4(x-3)|
- Y4 = |-4(x-3)|

7. What happens to the graph of y = |b(x - 3)| when the value of b changes signs from positive to negative? When b changes signs, the graph is reflected across the line y = c. However, the pattern is not noticeable in the graph because of the symmetry of the graph across the line y = c.

|   |         |   |   | Ţ | 1.           | 1        |     | X   | Y1 | Y2 | Y3 | Y4 |
|---|---------|---|---|---|--------------|----------|-----|-----|----|----|----|----|
|   |         |   | - | X | -1 -         | 1        | • / | -5  | 8  | 8  | 32 | 32 |
| - |         | - |   | 1 | - \ -        | 1        | 1.  | -4  | 7  | 7  | 28 | 28 |
|   |         |   |   |   | $(\Lambda)$  | · ,      |     | -3  | 6  | 6  | 24 | 24 |
| - |         |   | - | + | $\mathbb{N}$ | /        |     | -2  | 5  | 5  | 20 | 20 |
|   | <br>+ + |   |   | + | <br>+ ¥      | <u> </u> |     | -1  | 4  | 4  | 16 | 16 |
|   |         |   |   |   |              |          |     | 0   | 3  | 3  | 12 | 12 |
| - |         | - | - | † |              |          |     | 1   | 2  | 2  | 8  | 8  |
| - |         | - |   | + |              |          |     | 2   | 1  | 1  | 4  | 4  |
|   |         |   |   |   |              |          |     | 3   | 0  | 0  | 0  | 0  |
|   |         |   |   | Ť |              |          |     | 1 4 | 1  | 1  | 4  | 4  |
|   |         |   |   | + |              |          |     | 5   | 2  | 2  | 8  | 8  |



#### Part 3: Investigating c

- Y1 = |*x*|
- $Y_2 = |x 2|$
- Y3 = |x 3|
- Y4 = |x 5|
- 8. What happens to the graph of y = |x c| when the value of c increases?

# As c increases, the graph shifts or translates c units to the right from the parent function.

|   |     |   | / | $\overline{)}$  | /                    | -      | 1            | /   | -/  |        | Х  | Y1 | Y 2 | Yз | Y4 |
|---|-----|---|---|-----------------|----------------------|--------|--------------|-----|-----|--------|----|----|-----|----|----|
|   |     |   |   | $\setminus$ $+$ |                      | X      | /            | ۰., | / / | $\sim$ | -5 | 5  | 7   | 8  | 10 |
|   |     | ` |   | - 1             | $\mathbf{i}$         |        | × 1          |     | Ζ.  | 1      | -4 | 4  | 6   | 7  | 9  |
|   |     |   |   |                 | $\backslash \rangle$ |        | $\times$     |     |     | 4      | -3 | 3  | 5   | 6  | 8  |
| - |     |   |   | ∖†              | Х                    | $\sim$ | / /          | X.  | • / |        | -2 | 2  | 4   | 5  | 7  |
|   | + + |   | + | $+ \gamma$      | -                    | $\sim$ | $\checkmark$ | +   | +   | _      | -1 | 1  | 3   | 4  | 6  |
|   |     |   |   |                 |                      |        |              |     |     | 1      | 0  | 0  | 2   | 3  | 5  |
| - |     |   |   | · †             |                      |        |              |     |     | 1      | 1  | 1  | 1   | 2  | 4  |
|   |     | - |   | - +             |                      |        |              |     |     | 1      | 2  | 2  | 0   | 1  | 3  |
|   |     |   |   |                 |                      |        |              |     |     | 1      | 3  | 3  | 1   | 0  | 2  |
|   |     |   |   | · †             |                      |        |              |     |     | 1      | 4  | 4  | 2   | 1  | 1  |
|   |     |   |   | - +             |                      |        |              |     |     |        | 5  | 5  | 3   | 2  | 0  |

- Y1 = |x|
- Y2 = |x + 1|
- Y3 = |x + 3|
- Y4 = |x + 5|
- 9. What happens to the graph of y = |x c| when the value of c is negative and decreases?

# As c decreases, the graph shifts or translates c units to the left of the parent function.



### Part 4: Investigating d

- Y1 = |x|
- $Y^2 = |x| + 1$
- Y3 = |x| + 2
- Y4 = |x| + 3
- 10. What happens to the graph of y = |x| + d when the value of d increases?

As d increases, the graph shifts or translates d units upward from the original function.

|                                |   | / | /   |   | /            | t               | / /      | / / | / / | / |   |    | Х  | Y1 | Y 2 | Yз | Y4 |
|--------------------------------|---|---|-----|---|--------------|-----------------|----------|-----|-----|---|---|----|----|----|-----|----|----|
| · · · <b>∖ ∖ ¥ / / /</b> · · · |   |   |     |   |              |                 |          |     |     |   |   | -5 | 5  | 6  | 7   | 8  |    |
|                                |   |   | . 1 |   |              | $\mathbf{\Psi}$ | 1        | 1   | · . |   |   |    | -4 | 4  | 5   | 6  | 7  |
|                                |   |   |     |   |              |                 |          | /   |     |   |   |    | -3 | 3  | 4   | 5  | 6  |
|                                |   |   | -   | - | $\mathbf{i}$ | ¥.              | /        |     | -   | - |   |    | -2 | 2  | 3   | 4  | 5  |
| -                              |   |   | -   | - | `            | $\mathbf{V}$    | <u> </u> |     |     |   |   | -  | -1 | 1  | 2   | 3  | 4  |
| 1 °                            | · | · | ·   | • | ·            |                 | •        | •   | •   | • | · | •  | 0  | 0  | 1   | 2  | 3  |
|                                |   | - | -   | - | -            | +               | -        |     | -   | - |   |    | 1  | 1  | 2   | 3  | 4  |
|                                |   |   | -   |   |              | 1               |          |     |     |   |   |    | 2  | 2  | 3   | 4  | 5  |
|                                |   |   |     |   |              |                 |          |     |     |   |   |    | 3  | 3  | 4   | 5  | 6  |
|                                |   | - | -   |   | -            | +               | -        |     |     |   |   |    | 4  | 4  | 5   | 6  | 7  |
|                                |   |   |     |   |              | +               |          |     |     |   |   |    | 5  | 5  | 6   | 7  | 8  |

- Y1 = |x|
- $Y^2 = |x| 1$
- Y3 = |x| 2
- Y4 = |x| 3
- 11. What happens to the graph of y = |x| + d when the value of d is negative and decreases?

As d decreases, the graph shifts or translates d units downward from the original function.





#### **Debriefing Questions**

- 1. In general, how does the parameter a affect the graph of f(x) when it is changed to  $a \cdot f(x)$ ? The parameter a generates a vertical dilation or reflection. If a > 1, then the graph of f(x) is vertically dilated by a factor of a. If 0 < a < 1, then the graph of f(x) is vertically compressed by a factor of a. If a < 1, then the graph of f(x) is reflected across the horizontal line containing the vertex of the absolute value graph.
- 2. In general, how does the parameter b affect the graph of f(x) when it is changed to f(bx)? The parameter b generates a horizontal dilation or reflection. If b > 1, then the graph of f(x) is horizontally compressed by a factor of  $\frac{1}{b}$ . If 0 < b < 1, then the graph of f(x) is horizontally stretched by a factor of  $\frac{1}{b}$ . If b < 1, then the graph of f(x) is reflected across the vertical line containing the vertex of the absolute value graph.
- 3. In general, how does the parameter c affect the graph of f(x) when it is changed to f(x c)? The parameter c generates a horizontal translation. If c > 0, then the graph is translated c units to the right. If c < 0, then the graph is translated c units to the left.
- 4. In general, how does the parameter d affect the graph of f(x) when it is changed to f(x) + d? The parameter d generates a vertical translation. If d > 0, then the graph is translated d units up. If d < 0, then the graph is translated d units down.

