Solving One-Variable Equations and Inequalities *Evaluate*

1 A clothing store decided to increase the price on several items in the store. The table shows the original price, *p*, and the new price, *n*, of four of the items.

Item	Original Price (<i>p</i>)	New Price (<i>n</i>)		
А	\$15.00	\$18.75		
В	\$18.00	\$22.50		
С	\$25.00	\$31.25		
D	\$30.00	\$37.50		

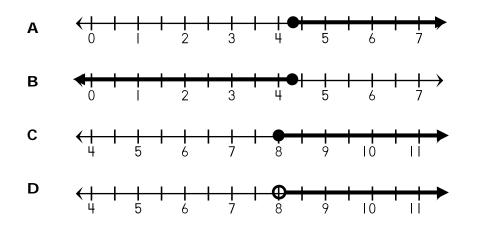
Price Increase

Which formula can be used to calculate the new price?

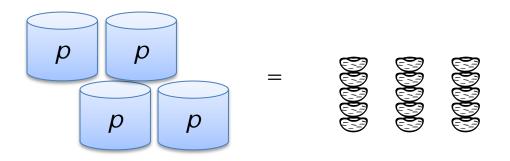
- **A** n = p + 3.75
- **B** $n = p \times 1.25$
- **C** n = p + 4.5
- **D** $n = p \times 0.75$
- **2** Which situation is best represented by the equation below?

3*x* = 12

- **A** Tony earned 3% commission on a sale of \$12. What is *x*, the amount of commission he earned?
- **B** Molly worked 3 hours and earned \$12. What is *x*, the amount of money she earned per hour?
- **C** Carly had 12 balloons and gave 3 balloons to her brother. What is *x*, the number of balloons Carly has now?
- **D** Gerald had 12 library books after returning 3. What is *x*, the number of books Gerald checked out from the library?



3 The model below represents the equations 2x = 6


What is the first step in finding the value of x?

- **A** Add 6 lightning bolts to each side of the model.
- **B** Add 6 negative lightning bolts to each side of the model.
- **C** Subtract 6 lightning bolts from each side of the model.
- **D** Divide the 6 lightning bolts among the 2 pentagons.
- **4** Daniel wants to buy a used video game that cost more than \$12.50. He has already saved \$8. The inequality $x + 8 \ge 12.5$ can be used to determine the amount of money, x, he must save in order to buy the video game. Which number line best represents the solution to the inequality?

5 The equation 4p = 15 is modeled below.

What value of *p* makes this equation true?

Record your answer and fill in the bubbles on your answer document. Be sure to use the correct place value.

					٠		
\oplus	0	0	0	0		0	0
\oplus \oplus	1	1	1	1		1	1
	2	2	2	2		2	2
	3	3	3	3		3	3
	4	4	4	4		4	4
	5	5	5	5		5	5
	6	6	6	6		6	6
	\bigcirc	Ø	Ø	Ø		\bigcirc	\bigcirc
	8	8	8	8		8	8
	9	9	9	9		9	9

- **6** Samantha has a maximum of \$100 to spend on her birthday party. The birthday cake costs \$32. She can spend *d* dollars to buy other things for her party. Which inequality can be used to find the possible values for *d*?
 - **A** $d + 32 \ge 100$
 - **B** $d 32 \le 100$
 - **c** *d* + 32 ≤ 100
 - **D** $d 32 \ge 100$
- **7** Which equation has a solution of $\frac{3}{4}$ for *x*?
 - **A** 16x = 12 **B** $x - \frac{1}{4} = 1$ **C** 6x = 8
 - **D** $1\frac{3}{4} + x = 2$

