

The student is expected to illustrate the measure of an angle as the part of a circle whose center is at the vertex of the angle that is "cut out" by the rays of the angle. Angle measures are limited to whole numbers.

The student is expected to illustrate degrees as the units used to measure an angle, where $1 / 360$ of any circle is one degree and an angle that "cuts" $n / 360$ out of any circle whose center is at the angle's vertex has a measure of \boldsymbol{n} degrees. Angle measures are limited to whole numbers.

The student is expected to determine the approximate measures of angles i degrees to the nearest whole number using a protractor.

TELL ME MORE...

An angle is for by rotating a ray about its endpoint, which is the vertex of the angle. The degree measure of an angle is the amount of rotation between the starting position and the ending position of the ray.

You can think of an angle a st part of a full circle that has been cut ut ${ }^{f}$.he ircle between the two rays, lines, or parts of two lines.

A full circle contains 360 egrees. We use the degree symbol, ${ }^{\circ}$, to represent der ees: $50^{\circ} \cdot 1^{\circ}$ is equal to $\frac{1}{360}$ of a full circle. If an angle cuts out o fou h of a circle, then the angle measure is equal to $\frac{1}{4}$ of $360^{\circ}-=\frac{\times 5}{90} \frac{90}{360^{\prime}}$, so this angle measure is 90°.

Why 360 Degrees?

We use a base-10 numbe..... where every place valu. s 10 times the place to its right.

Ancien. Jab lonia is used a base-60 n - mher sy tem where every place value is 6 u times ure place to its right.

If you didw a hexagon and circle so that t_{t} ir centers line up, the perimeter of the $h r$ xagon is 6 times the radius of the circle. $6 \times 60=360$, so Babylonians divided a full circle into 360 degrees. Mathematicians kept this number and we use it today.

EXAMPLES

Example 1: Use a circle to draw an angle that has a measure of 135°.
Step 1: Draw a circle with a ray whose endpoint is the center of the circle.
Step 2: Determine the part of the full circle represented by a 135° angle.

- A full circle is 360° so a 135° angle is represented by $\frac{135}{360}$ of a circle.
- $\frac{135}{360}=\frac{135 \div 45}{360 \div 45}=\frac{3}{8}$

An angle with a measure of 135° represents $\frac{3}{8}$ of a full circle.

Step 3: Construct a second ray so that it cuts out $\frac{3}{8}$ of the circle you drew in Step 1.

- Break the circle into 8 equal-sized parts.
- Shade 3 of the 8 parts to represent $\frac{3}{8}$ of th.
- Draw a ray from the center of the circle (ver x of the angle) along the edge of the third shaded pa.t.

Step 4: Label the angle along the circle

- $\frac{3}{8}$ of the circle is 135° out $+360^{\circ}$.
- Mark the ray that is the ena. g pc at of the rotation as a 135° angle.

Example 2: What is th me are fangle $J K L$ to the nearest degree?

Step 1: Begir the ray that is lined up with th baseline of the protractor. The vaseline is one of the two lines marked with 0°.

Step 2: Read the angle measure from the protractor.

- Rotate upward along the protractor, counting by 10 degrees, until you reach the ending ray of the angle.

The measure of angle $J K L$ is 116°.

You Try It!

What is the measure of angle $A B C$?
Bt in near point A at the 0° mark.
R tate upward along the protractor.
The measure of angle $A B C$ is
Circle one:

Example ?. r. gle is is shown on this protractor. What is theas me of angle M to the nearest degr e? ‘pla in your thinking.

Step 1: Think of the protractor as a curved number line from 0 to 180 . Determine the amount of rotation to the farther of the two rays.

- Begin at the 0° mark on the left-hand side.
- Rotate along the protractor until reaching the farther ray.
- Since 0 on the left-hand side is the top of the two numbers, use the top number to read along the protractor.

There are 115° of rotation to the farther ray.

Step 2: Determine the amount of rotation to the closer of the two rays.

- Begin at the 0° mark on the lefthand side.
- Rotate along the protractor until reaching the closer ray.

There are $s^{\circ} 0$ ota ${ }^{\circ}$ on to the clocer, v.

Step 3: Use a nu aber ine to represent the amount of rotation to either ray.

Ster 4: Use the number line to determine the measure of angle M.

- Determine the difference between the amount of rotation for the farther ray and the closer ray.
- $115-50=65$

The measure of angle M is 65°, because 115° minus 50° equals 65°.

PRACTICE

For questions 1-4, use a circle to draw an angle with the given measure as the part of a full circle that is cut out by the two rays forming the angle.

1. 90°
$\frac{90}{360}=-$

2. 45°

3. 180°

4. 120°

For questions 5-8, determine the measure of the given ay om to the nearest degree.
5. Angle $B C D$
7. Ang e WXY

6. Angle F

8. Angle $P D G$

Measuring Angles

9. Triangle $A B C$ is shown on the protractor. What is the measure of angle $B A C$?

10. What is the measure of angle $M N O$, shown on the protractor, to the nearest degree?

A 112°, because $122^{\circ} \mathrm{m}^{\circ}$ us 1° equals 112°.
B 52°, because 62 minus 10° equals 52°.
C 232 , bec use 2° plus $170^{\circ}=232^{\circ}$.
D 2°, because 170° minus $122^{\circ}=48^{\circ}$.
11. Which angle does NOT appear to have -a re of 7° ?

A

B

