KEY FEATURES OF LINEAR FUNCTIONS

The student is expected to graph linear functions on the coordinate plane and identify key features, including *x*-intercept, *y*-intercept, zeros, and slope, in mathematical and real-world problems.

TELL ME MORE ...

The graph of a linear function reveals certain attributes that are important to the function, especially when you are using a function to model real-world data or real-world situations. For example, the graph of $y = \frac{2}{5}x + 2$ (or, -2x + 5y = 10) is shown. Key features of the graph include the *x*-intercept, *y*-intercept, zero, and slope.

- The *x*-intercept is the point where the graph of the line crosses the *x*-axis. Here, the y-value is 0.
- The *y*-intercept is the point where the graph of the line crosses the *y*-axis. Here, the x-value is c
- The **zero** of a linear function is the input verue that generates an output value of 0. It is equivalent to the *x*-coordinate of the *x*-intercept
- The **slope** of a linear function is the s eepr ess of the graph of the line. Slope is measu eq as the ratio of the change in the vertical direction to the change in the horizontal direction.

EXAMPLES

EXAMPLE 1: The graph of vincar function is shown. What ordered pairs best 1 present the *x*-intercept and *y*-intercept of the line?

STEP 1 Use the cool din tes of the two points provided to determ ine the slope of the line.

$$m_{r} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-3)}{7 - (-5)} = \frac{4}{12} = \frac{1}{3}$$

STEP Determine the *y*-intercept, (0, y). Substitute x = 0 into the equation and solve for *y*.

$$y = \frac{1}{3}x - \frac{4}{3}$$

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{1}{3}(x - 7)$$

$$y - 1 = \frac{1}{3}x - \frac{7}{3}$$

$$y - 1 + 1 = \frac{1}{3}x - \frac{7}{3} + \frac{3}{3}$$

$$y = \frac{1}{3}x - \frac{4}{3}$$

61

STEP 4 Determine the coordinates of the y-intercept, (0, y), by substituting x = 0 and solving for *y*.

STEP 5 Check the reasonableness of your calculated intercepts by making sure the given graph crosses the line at these points.

EXAMPLE 2: The graph of r(x) is shown. What is the zero of r? Record your answer and fill in the bubbles on your answer document.

STEP 1 Use the coordinates of the two points provident to determine the slope of the line.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-5)}{6 - 3} = \frac{12}{3} = 4$$

m = 4

STEP 2 Use the point-slope formula to determine the equation of the line shown.

$$y - y_1 = m(1 - 1)$$

$$y - 7 = 4(x - 0)$$

$$1 = 7 = 12 - 24$$

$$y = 4x - 17$$

$$r(x) = -17$$

 $\begin{array}{c}
10 \\
9 \\
8 \\
7 \\
6 \\
5 \\
4 \\
3 \\
2 \\
10 \\
9 \\
8 \\
7 \\
6 \\
5 \\
4 \\
3 \\
2 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
1 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
-7 \\
-7 \\
-8 \\
-9 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\$

 $y = \frac{1}{3}x - \frac{4}{3}$ $0 = \frac{1}{3}x - \frac{4}{3}$

0 = x - 44 = x

 $y = \frac{1}{3}x - \frac{4}{3}$

 $y = \frac{1}{3}(0) - \frac{4}{3}$

 $y = (0) - \frac{4}{3}$

STEP : The zero of *r* is the *x*-value that makes r(x) = 0. Substitute 0 for r(x) and solve for *x*.

$$r(x) = 4x - 17$$
$$0 = 4x - 17$$
$$17 = 4x$$
$$\frac{17}{4} = x$$

The zero is $\frac{17}{4}$.

- **STEP 4** If the question is a gridded response question, enter your response on the grid provided. Practice using the grid with the instructions.
 - 1. Since the answer, $\frac{17}{4}$, is a fraction, convert it to a decimal, 4.25.
 - 2. Record a 4 in the first column containing numbers. Record a decimal point in the next column. Record and a 2 in the next column and a 5 in the next column.
 - 3. Bubble the 4 beneath the numeral 4. Bubble the . beneath the decimal point. Bubble the 2 beneath the numeral 2. Bubble the 5 beneath the numeral 5

EXAMPLE 3 The graph shows the volume of propane, V(x), in a propane tank after x months. What do the x-intercept, y-intercept, and slope of the graph represent.

STEP 1 Identify the coordinates of the *x*-intercept from the graph, if possible.

(20, 0)

2 5

 $\Theta O O O O O O O O$

3333333

5550555

666666

00000000

222222

(3)

6

63

333333

(4)(4)(4)(4)(4)

555555

66666

0

00000000

8888888

4

STEP 2 Interpret the coordinates of the *x*-intercept using the axis labels.
(20, 0) indicates 20 months and a core me of 0 cubic feet.

After 20 months, the volume ft' e propane tank was 0 cubic feet and the tank was empty.

STEP 3 Identify the coordinate of the *y*-intercept from the graph, if possible.(0, 500)

STEP 4 Interpret the port increase of the *x*-intercept using the axis labels. (0, 500) increases 0 n, on the and a volume of 500 cubic feet

In the bigin ing (0 months), the tank had 500 cubic feet of propane.

STEP 5 ...dent' y the slope from the graph. *n* = -25 cubic feet per month

STEP 6 Interpret the slope using the axis labels.
 A slope of -25 cubic feet per month indicates a decrease of 25 cubic feet of propane from the tank each month.

Each month, 25 cubic feet of propane was consumed

For each graph shown, identify the slope, x-intercept, y-intercept, and zero (if they exist).

5. Petra runs a snow cone stand in town. She sells snow cones in two sizes. Small cones sell for \$3 each and large cones sell for \$5 each. On Thursday evenings Petra sells an average of \$60 in snow cones. When the relationship of number of large cones sold, *x*, and the number of small cones sold, *y*, is plotted, what do the *x*- and *y*-intercepts represent?

6. The graph of linear function h(x) is shown. What is the zero of h(x)? Record your answer and fill in the bubbles on your answer document.

7. Maya's Coffee Club gift card balance information is shown in 'no table below.

	Days used, .) alance (\$), y
C	13	71
	14	68
	20	50
	26	32

If Maya writes a function to model the data on her gift card and graphs the function, where will the *x*- and *y*-intercepts be located?

- **8.** Carolina often calls her mother who lives in Canada. A 6-minute international call to her mother costs \$7 and a 15-minute international call costs \$10. On the graph of the function f(m) that represents the situation, what do the slope and *y*-intercept represent?
 - A The slope is the connection fee of \$5 and the *y*-intercept is the cost per minute.
 - **B** The slope is the cost por minute and the *y*-interceptors the lost of a 5-minute call.
 - **C** The slope s the cost per minute and the *y*-in. erce *p*t is the connection fee of \$5.
 - D The sippe is the cost to connect the call each minute and the p intercept is the cost after tanking 15-minutes.

The graph of a linear function is shown below.

How will the graph change if the slope remains the same and the zero is changed to 7?

- **F** The graph will shift up 10 units.
- **G** The graph will shift down 2 units.
- **H** The graph will get steeper.
- **J** The graph will be less steep.

65