MULTIPLYING POLYNOMIALS

A.10B

The student is expected to multiply polynomials of degree one and degree two.

1 TELL ME MORE...

A polynomial is an expression that is a sum of several terms. Polynomials may contain multiple variables, real number coefficients, and whole number exponents. Polynomials mov nu' ontain division with variables or non-whole number exponents.
Types of polynomials are named by the number of terms contained in the polynomial. Monomials have one term, binomials have two terms, and trinomials have three terms. Polynomials, of course, may have four or more terms as well.
The degree of a polynomial is its greatest exponent. For example if the term in the polynomial with the greatest exponent is $\pi 8$ then the polynomial is of degree eight. The polynomial 5.4 $x^{2}-8.3 x$ +11 is of degree two since the term with the greatest ex_{F} คnum has an exponent of two.
To multiply polynomials symbolically, use the dis ibutive property. Multiply each term in the first fact r by each term in the second factor. Then, use the propert fa a to simplify the expression representing the proc 'ct.

Monominis have one term.
xam ${ }^{r}$ res: $4,4 x, \frac{2}{3} x^{2} y^{3}$
Binomials have two terms.
Examples: $x+4,3 b-4 c$, $5 x y+1.8 x^{2} y$

Trinomials have three terms.
Examples: $x^{2}-\frac{2}{3} x+4$, $3 b^{4}-4 c+89 d^{7}$

EXAMPLES

EXAMPLE 1: Multipl $(5 x-1)(x+2)$.
STEP 1 Use the ist bu ve property to multiply the first term in the first factor, $5 x$, by both terms in the sec nd ractor.

STEP 2 Use the distributive property to multiply the second term in the first factor, $5 x$, by both terms in the second factor.

$$
\begin{gathered}
(5 x-7)(x+2) \\
-7(x)-7(2) \\
-7 x-14
\end{gathered}
$$

-7x-14

STEP 3 Combine the two partial products.

$$
\begin{aligned}
(5 x-7)(x+2)= & {\left[5 x^{2}+10 x\right]+[-7 x-14]=5 x^{2}+10 x-7 x-14 } \\
& (5 x-7)(x+2)=5 x^{2}+3 x-14
\end{aligned}
$$

$5 x^{2}+3 x-14$

EXAMPLE 2: Ian marked the boundary of a beach volleyball court as shown. The dimensions of the court are given in meters. Write an expression that represents the area of the beach volleyball court in square meters.

STEP 1 The area of a rectangle can be calculated using the formula $A=l w$. Let l and w each represent one dimension. Substitute the dimensions into the area formula.

$$
\begin{gathered}
A=l w \\
A=\left(\frac{7}{3} x\right)(6 x-21)
\end{gathered}
$$

$\left(\frac{7}{3} x\right)(6 x-21)$

STEP 2 Use the distributive property to multiply the firs factor by both terms of the second factor.

$$
\begin{gathered}
\left(\frac{7}{3} x\right)(6 x-21) \\
\left(\frac{7}{3} x\right)(6 x)+\left(\frac{7}{3} x\right)(-21) \\
14 x^{2}-49 x
\end{gathered}
$$

$14 x^{2}-49 x$
STEP 3 Use graphing technology to check your answer. Graph $Y 1=\left(\frac{7}{3} x\right)(6 x-2 \pi)$ hh product of the two dimensions, and $\vee=14 x^{-}-49 x$, the simplified product. If t^{l}, g_{1} pns coincide, then the expressions eq alent. You can also use tables to verify ${ }_{1}$ ivale ace.

The graphs coincide and table shows equivalent y-values for each x-value. The expressions are equivalent

EXAMPLE 3: For what value of k will the graphs of $y=3 x^{2}-24 x+k$ and $y=3(x-4)^{2}+15$ be the same? Record your answer and fill in the bubbles on your answer document.

STEP 1 Rewrite $\boldsymbol{y}=3(\boldsymbol{x}-4)^{2}+15$ in standard form. Use the distributive property and other properties of algebra to simplify the expression.

$$
\begin{gathered}
y=3(x-4)^{2}+15 \\
y=3(x-4)(x-4)+15 \\
y=3\left(x^{2}-8 x+16\right)+15 \\
y=3 x^{2}-24 x+48+15 \\
y=3 x^{2}-24 x+63
\end{gathered}
$$

$y=3 x^{2}-24 x+63$
STEP 2 Compare the two functions to determine the value of \boldsymbol{k}.

$$
\begin{gathered}
y=3 x^{2}-24 x+k \\
y=3 x^{2}-24 x+63
\end{gathered}
$$

Since the x^{2} term and x term are the same in both functions the conotant term should also be the same in both functions for the functions to be equivalen : and their graphs the same.
$k=63$
STEP 3 Since the question is a gridded response questio. enter your response on the grid provided. Practice using the grid with the instructi

1. Record a 6 in the first colum cont into numbers. Record a 3 in the I xt coll mn.
2. Bubble the 6 beneath the numer the 3 beneath the numeral 3 .

PRACTICE

Multiply the fillo ing pairs of polynomials.

1. $3 x$ nc $4 x-5)$
2. $\frac{1}{2} x$ and $8 x$
3. $1.5 x$ and $\left(4 x^{2}-10 x+20\right)$
4. $(3 m-7)$ and $(11 m+2)$
5. $(7 b+8)$ and $\left(2 b^{2}-5 b+8\right)$
6. $\left(3 z^{2}-6 z+10\right)$ and $\left(z^{2}+2 z-1\right)$
7. On a recent road trip, Patrick traveled at an average rate of $3 x+5$ miles per hour and reached his destination in $4 x-1$ hours. Write an expression in standard form that represents the distance Patrick traveled $(d=r t)$.
8. The diagram below shows a triangular garden with dimensions as marked.

The area a tringle is found using the form. la $A=\frac{1}{2} b h$ where A is the a ea, b is the base length of the trian $r_{0}{ }^{-1}$, and h is the height of the trie hgle. Write a trinomial expression . represent the area of the garden in square units.
9. The bottom of Cinnamon's dog crate has a length 6 inches greater than its width, w. Cinnamon's owner Anna plans to get Cinnamon a new crate that is 4 inches larger on both the length and width. Write an expression in standard form that represents the area, A, of Cinnamon's new crate in terms of w, the width of her current crate?
10. The area of a trapezoid is found using the formula $A=\frac{h}{2}\left(b_{1}+b_{2}\right)$, where A is the area of the trapezoid, h is the height, and b_{1} and b_{2} are the lengths of the trapezoid's bases. What expression in standard form represents the area of a trapezoid with bases $(x-6)$ and $(3 x+4)$ inches long and a height of $5 x$ inches?
11. What degree 4 expression is equivalent to $3 a\left(4 a^{2}-a+12\right)(7-a)$?
12. Write an expression for the area of a rectangle with a length of $(x+5)^{2}$ feet and a width of $(3-x)$ feet.
13. The surface area of a cube can be calculated using the f $\mathrm{rm} \mu \mathrm{la} \hat{\mathrm{s}}=6 s^{2}$, where s represents the do length of the cube. If th dg length of a cube is $(2 x+$,$) cer imeters, the$ surface are a 0 th cube is equal to $24 x^{2}+1(\Delta x-c$. What is the value of c ? Recor ' your answer and fill in the bu $\mathrm{bbl}_{\text {as }}$ on your answer document.

14. A packing box has a length of $(2 x+3)$ units, a width of $(4-x)$ units, and a height of $(3 x-4)$ units. The volume of the box can be determined by using the formula $V=B h$ where V is the volume, B is the area of the base of the box, and h is the height of the box. What expression can be used to find V, the volume of the box in terms of x in simplified form?

A $V=-6 x-48$
B $V=-6 x^{3}+8 x^{2}+36 x-4$
C $V=-6 x^{3}+41 x^{2}-8-4$
D $V=-6 x^{3}+73 x^{2}+10 x+8$
15. K، mi was simplifying the expression $(2 x-3)(4 x+5)$ on a math exam. She got the answer $8 x-15$ but that answer was not one of the choices. What mistake did Kami make in simplifying and what should her answer have been?

F She should have added like terms to get $6 x+2$.
C She didn't fully distribute to get $8 x^{2}-2 x-15$.
H She didn't combine middle terms correctly to get $8 x^{2}+22 x-15$.
J She made a sign error and should have gotten $8 x+15$.

