SLOPE AS A RATE OF CHANGE

The student is expected to use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y-values to the change in x-values, $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, is the same for any two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on the same line.

1 TELL ME MORE...

The slope of a line is a measure of the steepness of its graph. In the graph shown, line f has a slope of $\frac{1}{2}$, meaning that the ratio of the change in the vertical direction to the change in the horizontal direction is $\frac{1}{2}$.

Consider three points along line $f: A(-8,1), D(2$, $6)$, and $H(6,8)$. Let $\overline{A D}$ be the hypotenuse of right triangle $A J D$ and $\overline{D H}$ be the hypotenuse of right triangle $D K H$ as shown in the graph.

- The vertical distance between points A and D is represented by $\overline{J D}$, which has a length equal to the difference of the y-coordinates of D and A : 6-1 = 5 .
- The horizontal distance betwe ir r ii ts A and D is represented by $\overline{A J}$, wich h s a
 length equal to the difference 0 . the x-coordinates of D and $A: 2-(-8)=10$.
- The vertical distance between points D and H is represented by $\overline{K H}$, which has a length equal to the $\mathrm{di}^{\text {f }}$ ance of the y-coordinates of H and $D: 8-6=2$.
- The horizontal dis an br iween points D and H is represented by $\overline{D K}$, which has a length equal to a. ference of the x-coordinates of H and $D: 6-2=4$.

Triangles $A J D$ and $D^{\prime} H$ similar, so the ratios of corresponding side lengths are equal.

$$
\begin{aligned}
\frac{I D}{A J} & =\frac{K H}{D K} \\
\frac{6-1}{2-(-8)} & =\frac{8-6}{6-2} \\
\frac{5}{10} & =\frac{2}{4}
\end{aligned}
$$

The equivalent ratios represent the slope of line f. For any two points on line $f,\left(x_{1}, y_{1}\right)$ and $\left(x_{2^{\prime}} y_{2}\right)$, the slope of line f is the ratio of the vertical distance $\left(y_{2}-y_{1}\right)$ to the horizontal distance $\left(x_{2}-x_{1}\right)$ between the two points.

EXAMPLES

EXAMPLE 1: Triangles $A B C$ and $D E F$ are similar right triangles. Write a proportion that could be used to show that the slope of $\overline{D F}$ is the same as the slope of $\overline{A C}$.

STEP 1 Identify the coordinates of points A, C, D, and F.
A (-7, 9)
C $(0,-5)$
D $(-4,3)$
F $(-1,-3)$
STEP 2 Use the coordinates of D and F to write the slope of $\overline{D F}$ as the ratio of the vertical distance to the horizontal distance. Let $D(-4,3)=\left(x_{1}, y_{1}\right)$ and $F(-1,-3)=\left(x_{2^{\prime}} y_{2}\right)$.
$\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{-1-(-4)}$

Slope of $\overline{D F}=\frac{-3-3}{-1-(-4)}$
STEP 3 Use the coordinates of A and C to write th one of $\overline{A C}$ as the ratio of the vertical distance to the horizontal distance. Let $A(-7,9)=\left(x_{1} y_{1}\right)$ at d $C(0,-5)=\left(x_{2^{\prime}} y_{2}\right)$.

$$
\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-1}{\gamma-(-7)}
$$

Slope of $\overline{A C}=\frac{-5-9}{0-(-7)}$

STEP 4 A proportion is two c me equivalent ratios. Write a proportion sett ng , e atios for each slope equal to each other.
Slope of $\overline{\Gamma n}=$ Slo, e $\leq \overline{A C}$

$$
\frac{-3-3}{-1-(-4}=\frac{-5-9}{6-(-7)}
$$

3

- $\frac{7}{7}$

YOU TRY IT!
Triangle $A B C$ and $B D E$ are similar right triangles. Write a proportion using the coordinates of points A, B, and D to show that the slope of $\overline{A B}$ is equal to the slope of $\overline{B D}$.

Slope of $\overline{A B}=$ Slope of $\overline{B D}$

EXAMPLE 2: The table contains some points contained on line k. Triangle $F G M$ is similar to triangle HJN. Write a proportion to show that the slope of $\overline{F G}$ is equal to the slope of $\overline{H J}$.

STEP 1 Use the coordinates of F and G to write the slope of $\overline{F G}$ as the ratio of the vertical distance to the horizontal distance. Let $\mathrm{F}(-8,6)=\left(x_{1}, y_{1}\right)$ and $G(-4,5)=\left(x_{2^{\prime}} y_{2}\right)$.

	\boldsymbol{x}	\boldsymbol{y}
F	-8	6
G	-4	5
H	4	3
J	8	2

$$
\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-6}{-4-(-8)}
$$

Slope of $\overline{\boldsymbol{F G}}=\frac{\mathbf{5 - 6}}{\mathbf{- 4 - (- 8)}}$
STEP 2 Use the coordinates of H and J to write the slope of $\overline{H J}$ as the ratio of the vert \sim^{1} disw ace to the horizontal distance. Let $H(4,3)=\left(x_{1^{\prime}} y_{1}\right)$ and $J(8,2)=\left(x_{2^{\prime}} y_{2}\right)$.

$$
\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{8-4}
$$

Slope of $\overline{\mathbf{H J}}=\frac{\mathbf{2 - 3}}{\mathbf{8 - 4}}$
STEP 3 A proportion is two or more equivalent ratios. Write a proportion setting the ratios for each slope equa ${ }^{1}$ to each other.

Slope of $\overline{F G}=$ Slope of $\overline{H J}$
$\frac{5-6}{-4-(-8)}=\frac{2-3}{8-4}$
$\frac{-1}{4}=\frac{-1}{4}$

PRACTICE

Use the graph o mswe questions 1-3.

1. Write a ratio to show the slope of $\overline{A B}$.
2. Write a ratio to show the slope of $\overline{R T}$.
3. Complete the following statement using an inequality or equality symbol.

Slope of $\overline{A B}$ ___ Slope of $\overline{R T}$

4. What ratio represents the slope of the hypotenuse of triangle JKL?
5. What ratio represents the slope of the hypotenuse of triangle $E F G$?
6. What is the relationship between the two slope values?
7. Triangles $L M N$ and $T U V$ are milar right triangles. Which proportı n shows that the slope of $\overline{L N}$ and th slope of $\overline{T V}$ are equal?

A $\frac{-2-2}{-10-0}=\frac{0-6}{-5-10}$
B $\frac{-10-2}{-2-0}=\frac{-5-6}{0-10}$
C $\frac{-10-0}{-2-2}=\frac{-5-10}{0-6}$
D $\frac{-2-0}{-10-2}=\frac{0-10}{-5-0}$
8. Triangle $F G H$ and $G J K$ are similar right triangles. Write a proportion using the coordinates of F, G, and J to show that the slopes of $\overline{F G}$ and $\overline{G J}$ are equal.

9. Triangles $\Lambda{ }^{\prime} L$ and $P Q R$ are similar right sian les plotted along line h.

Which statement is true?

F The slope of the hypotenuse of $J K L$ is less than the slope of the hypotenuse of $P Q R$.
C The slope of the hypotenuse of $J K L$ is the same as the slope of the hypotenuse of $P Q R$.
H The slope of the hypotenuse of $J K L$ is greater than the slope of the hypotenuse of $P Q R$.
J The slopes of the hypotenuses of $J K L$ and $P Q R$ have no relationship.

