ADDING AND SUBTRACTING FRACTIONS

The student is expected to represent and solve addition and subtraction of fractions with unequal denominators referring to the same whole using objects and pictorial models and properties of operations.

1 TELL ME MORE...

A fraction is a number that expresses a certain part of a whole quantity. The denomin tor tells you the number of equal-sized parts into which the whole is divided and the $\mathbf{r \cdots m e r}$ or tells you the number of those parts to which the fraction refers.

The fraction $\frac{5}{6}$ describ 55 F ru. of a whole (1 unit) that is bre sen int 68 qual-sized parts. You can use a rodel s ch as a fraction circle to see 5 out of the equal-sized parts. The model sho s you how much of the whole unit t^{\prime} at 6 epresents.

Add or Subtract: Different Denominator

- Both fractions represent a whole broken into different numbers of equal-sized parts.

- You need a common denom na. or. in this case, break the first 1 ct. 1 gl f into 9 equal-sized parts rath ha. 3 and write an equivalent fractic

un - - Jubtract: Same Denominator
- Zoth fractions represent a whole broken into the same number of equal-size parts.

- Combine (or remove) the number of parts represented by each fraction.
- Add (or subtract) the numerators.

Once both wholes are broken into 9 equal-sized parts (that is, both fractions have a common denominator), you can add or subtract the fractions.

EXAMPLES

EXAMPLE 1: Kazumi tied two pieces of ribbon together. One piece was $\frac{3}{8}$ yard long. The second piece was $\frac{1}{2}$ yard long. What is the combined length of ribbon?
STEP 1 Represent $\frac{3}{8}$ using a fraction circle model. The circle has 8 equal parts (the
 denominator is 8). Shade 3 of those parts (the numerator is 3) to show 3 out of 8 parts for $\frac{3}{8}$.

STEP 2 Represent $\frac{1}{2}$ using a fraction circle model. The circle has 2 equal parts (the
 denominator is 2). Shade 1 of those parts (the numerator is 1) to show 1 out of 2 parts for $\frac{1}{2}$.

STEP 3 Use the two models to replace the fractions in your original number sentence.

STEP 4 Determine the common denominator.
The circle representing $\frac{3}{8}$ has two halves with 4 parts in each. So you can break the circle representing $\frac{1}{2}$ into 8 parts.

The common denominator is 8 .

STEP 5 Combine the two circles (add the fractions). Record the sum as fract on. $\frac{\mathbf{7}}{\mathbf{8}}$, so the combined length of ribbon is $\frac{\mathbf{7}}{8}$ yards

EXAMPLE 2: Marla walked $\frac{5}{6}$ of a mile on Monday anc. $\frac{7}{?}$ of a mile on Tuesday. How much farther did Marla walk on Monday than Tuesday.

STEP 1 Determine whether the problem s an a taicon or a subtraction problem.

- Draw a strip diagram.

$\frac{7}{12}$ on Tuesday	
$\frac{5}{6}$ on Moı day	

- You are 'oo ing for one of the parts so use subtr: ction.
The rombm requires subtraction.
STEP . W L-ite I.e subtraction sentence.
- Monday - Tuesday $=$ Difference $\frac{5}{6}-\frac{7}{12}=$?

STEP 3 Determine the common denominator.

- $6 \times 2=12$ and $1 \times 12=12$

The common denominator will be 12 .

STEP 4 Rewrite $\frac{5}{6}$ and $\frac{7}{12}$ with a common denominator of 12 and then add the fractions.

- $\frac{5}{6}=\frac{5 \times 2}{6 \times 2}=\frac{10}{12}$
- $\frac{5}{6}-\frac{7}{12}=\frac{10}{12}-\frac{7}{12}=\frac{3}{12}$

Marla walked $\frac{3}{12}$ miles farther on Monday than Tuesday.

MAKE A NOTE . . .

How could you rewrite $\frac{3}{12}$ as a fraction in lowest terms with a denominator of 4 ?

EXAMPLE 3: Roberto had some friends over to watch a baseball game on television. He made his favorite fruit punch. The models are shaded to show the fraction of a gallon of different types of juice that Roberto combined to make the fruit punch. What fraction of a gallon of fruit punch did Roberto make?

STEP 1 Determine whether the problem is an addition or a subtraction problem.

- Roberto combined three different juices.
- If you combine things then you are \sim ding them together.

The problem requires addition
STEP 2 Identify the fraction of a gallo. of each juice that Roberto used.
grape

- The denominator represents the number of equa $-\mathrm{cs}^{2} \angle \mathrm{ed}$ parts into which he wh sle gallon is brol ent.

- The num ato r rc presents the numb of pa.ts f juice that were used.
Roberto sea $\frac{1}{4}$ gallon of grape juice, $\frac{1}{2}$ gallon of apple juice, and $\frac{\mathbf{2}}{12}$ gallon of cra 1 b . V juice.

STEP
use the models to determine a cor mon denominator for the three fractions.

- $\frac{1}{4}$ is equivalent to $3, \frac{1}{12}$ pieces.

cranberry | $\frac{1}{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- $\frac{1}{2}$ is equivalent to $6, \frac{1}{12}$ pieces.

The common denominator

STEP 4 Break each bar into $\frac{1}{12}$ pieces.
STEP 5 Add the fractions by counting the total number of $\frac{1}{12}$ pieces.
There are 11, $\frac{1}{12}$ pieces, so Roberto used $\frac{11}{12}$ gallons of juice to make fruit punch.

grape | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

apple

$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$

cranberry

| $\frac{1}{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PRACTICE

Write the number sentence represented by each fraction model.

Shade the fraction model to represent each number sente.
4. $\frac{7}{8}-\frac{1}{2}$

5. $\frac{2}{3}+\frac{5}{9}$

6. $\frac{3}{5}+\frac{6}{10}$

Use the fraction models to de miv e the sum or difference.
7. $\frac{7}{8}+\frac{1}{4}$

8. $\frac{5}{6}-\frac{1}{3}$

9. $\frac{4}{5}-\frac{3}{10}$

10. $\frac{2}{4}+\frac{3}{8}$

11. $\frac{7}{10}-\frac{2}{5}$

12. Mrs. Smith's homeroom and Mr. Gonzales's homeroom classes each ate a portion of one of two identical cakes. The diagram is shaded to show the portion of each cake that was eaten. What fraction of one cake did the two classes eat together?

Mrs. Smith's homeroom

Mr. Gonzales's homeroom
13. The diagram below represents $\frac{11}{12}-\frac{2}{3}$. What is the difference shown in the diagram?

14. Mrs. Marin $\mathrm{Jp} \mathrm{c}^{1}$ ou used the models below to re ard the traction of one tank of gacoli 0 that she used last week and thi w e ${ }^{\text {h }}$. How much more of a tank of ga ol ne did Mrs. Marinopolous use this week than last week?

15. The shaded part of the model represents a fraction. Another fraction was subtracted from the first fraction. Which expression does the model represent?

A $\frac{7}{12}-\frac{2}{5}$
B $\frac{7}{10}-\frac{4}{5}$
C $\frac{7}{12}-\frac{4}{5}$
D $\frac{7}{10}-\frac{2}{5}$
16. The fr ictr η hiodels below show the po tic of he total points scored hu th. volleyball team by the three eading athletes. What fraction of th. total points did the three athletes score altogether?

Brianne:

Tosha:

Yesenia:

F $\frac{4}{20}$
C $\frac{5}{8}$
H $\frac{4}{8}$
J $\frac{5}{10}$

