	Grade 6 Math TEKS/SE	Prior Learning TEKS/SE
6.2	Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:	
6.2A	classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.	
6.2B	identify a number, its opposite, and its absolute value.	4.4G represent fractions and decimals to the tenths or hundredths as distances from zero on a number line.
6.2C	locate, compare, and order integers and rational numbers using a number line.	4.4G represent fractions and decimals to the tenths or hundredths as distances from zero on a number line.
6.2D	order a set of rational numbers arising from mathematical and real-world contexts.	5.2B compare and order two decimals to thousandths and represent comparisons using the symbols $>,<$, or $=$.
6.2E	extend representations for division to include fraction notation such as a / b represents the same number as $a \div b$ where $b \neq 0$.	4.4A represent a fraction a / b as a sum of fractions $1 / b$, where a and b are whole numbers and b >0, including when $a>b$.
6.3	Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:	
6.3A	recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values.	3.4J determine a quotient using the relationship between multiplication and division.
6.3B	determine, with and without computation, whether a quantity is increased or decreased when multiplied by a fraction, including values greater than or less than one.	
6.3C	represent integer operations with concrete models and connect the actions with the models to standardized algorithms.	
6.3D	add, subtract, multiply, and divide integers fluently.	
6.3E	multiply and divide positive rational numbers fluently.	5.3B multiply with fluency a three-digit number by a two-digit number using the standard algorithm. 5.3C solve with proficiency for quotients of up to a four-digit dividend by a two- digit divisor using strategies and the standard algorithm.

5.3D

represent multiplication of decimals with products to the hundredths using objects and pictorial models, including area models.

5.3E

solve for products of decimals to the hundredths, including situations involving money, using strategies based on placevalue understandings, properties of operations, and the relationship to the multiplication of whole numbers.

5.3F

represent quotients of decimals to the hundredths, up to four-digit dividends and two-digit whole number divisors, using objects and pictorial models, including area models.

5.3G

solve for quotients of decimals to the hundredths, up to four-digit dividends and two-digit whole number divisors, using strategies and algorithms, including the standard algorithm.

5.31

represent and solve multiplication of a whole number and a fraction that refers to the same whole using objects and pictorial models, including area models.

5.3J

represent division of a unit fraction by a whole number and the division of a whole number by a unit fraction such as $1 / 3 \div 7$ and $7 \div 1 / 3$ using objects and pictorial models, including area models.

5.3L

divide whole numbers by unit fractions and unit fractions by whole numbers.

Grade 6 Math TEKS and Related Prior Learning TEKS

6.4	Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:	
6.4A	compare two rules verbally, numerically, graphically, and symbolically in the form of y $=a x$ or $y=x+a$ in order to differentiate between additive and multiplicative relationships.	5.4C generate a numerical pattern when given a rule in the form $y=a x$ or $y=x+a$ and graph. 5.4D recognize the difference between additive and multiplicative numerical patterns given in a table or graph.
6.4B	apply qualitative and quantitative reasoning to solve prediction and comparison of realworld problems involving ratios and rates.	
6.4C	give examples of ratios as multiplicative comparisons of two quantities describing the same attribute.	
6.4D	give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients.	
6.4E	represent ratios and percents with concrete models, fractions, and decimals.	
6.4 F	represent benchmark fractions and percents such as $1 \%, 10 \%, 25 \%, 331 / 3 \%$, and multiples of these values using 10 by 10 grids, strip diagrams, number lines, and numbers.	
6.4G	generate equivalent forms of fractions, decimals, and percents using real-world problems, including problems that involve money.	
6.4H	convert units within a measurement system, including the use of proportions and unit rates.	5.7A solve problems by calculating conversions within a measurement system, customary or metric.
6.5	Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships. The student is expected to:	
6.5A	represent mathematical and real-world problems involving ratios and rates using scale factors, tables, graphs, and proportions.	
6.5B	solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models.	

6.5C	use equivalent fractions, decimals, and percents to show equal parts of the same whole.	4.2G relate decimals to fractions that name tenths and hundredths. 4.3C determine if two given fractions are equivalent using a variety of methods. 4.3D compare two fractions with different numerators and different denominators and represent the comparison using the symbols $\gg=$, or $<$. 3.3F represent equivalent fractions with denominators of $2,3,4,6$, and 8 using a variety of objects and pictorial models, including number lines.
6.6	Expressions, equations, and relationships. Th standards to use multiple representations to expected to:	udent applies mathematical process cribe algebraic relationships. The student is
6.6A	identify independent and dependent quantities from tables and graphs.	
6.6B	write an equation that represents the relationship between independent and dependent quantities from a table.	
6.6C	represent a given situation using verbal descriptions, tables, graphs, and equations in the form $y=k x$ or $y=x+b$.	
6.7	Expressions, equations, and relationships. T standards to develop concepts of expression	tudent applies mathematical process nd equations. The student is expected to:
6.7A	generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization.	5.4E describe the meaning of parentheses and brackets in a numeric expression. 5.4F simplify numerical expressions that do not involve exponents, including up to two levels of grouping.
6.7B	distinguish between expressions and equations verbally, numerically, and algebraically.	$5.4 \mathrm{~B}$ represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.
6.7C	determine if two expressions are equivalent using concrete models, pictorial models, and algebraic representations.	

6.7D	generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.	
6.8	Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:	
6.8A	extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a triangle.	
6.8B	model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes.	5.4G use concrete objects and pictorial models to develop the formulas for the volume of a rectangular prism, including the special form for a cube ($V=I \times w \times h, V=s \times s \times s$, and $V=$ Bh).
6.8C	write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.	5.4H represent and solve problems related to perimeter and/or area and related to volume.
6.8D	determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.	
6.9	Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:	
6.9A	write one-variable, one-step equations and inequalities to represent constraints or conditions within problems.	
6.9B	represent solutions for one-variable, onestep equations and inequalities on number lines.	
6.9C	write corresponding real-world problems given one-variable, one-step equations or inequalities.	
6.10	Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:	
6.10A	model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.	5.4B represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.

6.10B determine if the given value(s) make(s) onevariable, one-step equations or inequalities true.
5.4B
represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.
6.11 Measurement and data. The student applies mathematical process standards to use coordinate geometry to identify locations on a plane.
6.11A The student is expected to graph points in all four quadrants using ordered pairs of rational numbers.

5.8A

describe the key attributes of the coordinate plane, including perpendicular number lines (axes) where the intersection (origin) of the two lines coincides with zero on each number line and the given point $(0,0)$. the x coordinate, the first number in an ordered pair, indicates movement parallel to the x axis starting at the origin. the y-coordinate, the second number, indicates movement parallel to the y-axis starting at the origin.

5.8B

describe the process for graphing ordered pairs of numbers in the first quadrant of the coordinate plane.

5.8C

graph in the first quadrant of the coordinate plane ordered pairs of numbers arising from mathematical and real- world problems, including those generated by number patterns or found in an input-output table.
6.12 Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to:
6.12A represent numeric data graphically, including dot plots, stem-and-leaf plots, 5.9A represent categorical data with bar graphs or histograms, and box plots.
frequency tables and numerical data,
including data sets of measurements in fractions or decimals, with dot plots or stem-and- leaf plots.
6.12B use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution.
6.12C summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution.

6.12D	summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.	
6.13	Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to solve problems. The student is expected to:	
6.13A	interpret numeric data summarized in dot plots, stem-and-leaf plots, histograms, and box plots.	5.9C solve one- and two-step problems using data from a frequency table, dot plot, bar graph, stem-and-leaf plot, or scatterplot.
6.13B	distinguish between situations that yield data with and without variability.	
6.14	Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	
6.14A	compare the features and costs of a checking account and a debit card offered by different local financial institutions.	5.10D develop a system for keeping and using financial records.
6.14B	distinguish between debit cards and credit cards.	5.10C identify the advantages and disadvantages of different methods of payment, including check, credit card, debit card, and electronic payments.
6.14C	balance a check register that includes deposits, withdrawals, and transfers.	
6.14D	explain why it is important to establish a positive credit history.	
6.14E	describe the information in a credit report and how long it is retained.	
6.14F	describe the value of credit reports to borrowers and to lenders.	
6.14G	explain various methods to pay for college, including through savings, grants, scholarships, student loans, and work-study.	
6.14H	compare the annual salary of several occupations requiring various levels of postsecondary education or vocational training and calculate the effects of the different annual salaries on lifetime income.	5.10B explain the difference between gross income and net income.

innovation in education

