	Grade 4 Math TEKS/SE	Prior Learning TEKS/SE
4.2	Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to:	
4.2A	interpret the value of each place-value position as 10 times the position to the right and as one-tenth of the value of the place to its left.	3.2B describe the mathematical relationships found in the base-10 place value system through the hundred thousands place.
4.2B	represent the value of the digit in whole numbers through 1,000,000,000 and decimals to the hundredths using expanded notation and numerals.	3.2A compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as appropriate.
4.2C	compare and order whole numbers to 1,000,000,000 and represent comparisons using the symbols $>,<$, or $=$.	3.2D compare and order whole numbers up to 100,000 and represent comparisons using the symbols $>,<$, or $=$.
4.2D	round whole numbers to a given place value through the hundred thousands place.	$3.4 \mathrm{~B}$ round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems.
4.2E	represent decimals, including tenths and hundredths, using concrete and visual models and money.	
4.2F	compare and order decimals using concrete and visual models to the hundredths.	
4.2G	relate decimals to fractions that name tenths and hundredths.	
4.2H	determine the corresponding decimal to the tenths or hundredths place of a specified point on a number line.	3.2C represent a number on a number line as being between two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relative size of numbers in order to round whole numbers.
4.3	Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to:	
4.3A	represent a fraction a / b as a sum of fractions $1 / b$, where a and b are whole numbers and b >0, including when $a>b$.	3.3D compose and decompose a fraction a / b with a numerator greater than zero and less than or equal to b as a sum of parts $1 / b$.
4.3B	decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models and recording results with symbolic representations.	3.3D compose and decompose a fraction a / b with a numerator greater than zero and less than or equal to b as a sum of parts $1 / b$.

4.3C	determine if two given fractions are equivalent using a variety of methods.	3.3G explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model.
4.3D	compare two fractions with different numerators and different denominators and represent the comparison using the symbols $>$, $=$, or $<$.	3.3 H compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models.
4.3E	represent and solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line and properties of operations.	
4.3F	evaluate the reasonableness of sums and differences of fractions using benchmark fractions $0,1 / 4,1 / 2,3 / 4$, and 1 , referring to the same whole.	
4.3G	represent fractions and decimals to the tenths or hundredths as distances from zero on a number line.	3.3A represent fractions greater than zero and less than or equal to one with denominators of $2,3,4,6$, and 8 using concrete objects and pictorial models, including strip diagrams and number lines. 3.3B determine the corresponding fraction greater than zero and less than or equal to one with denominators of $2,3,4,6$, and 8 given a specified point on a number line.
4.4	Number and operations. The student applies and use strategies and methods for whole nu differences in order to solve problems with effic to:	thematical process standards to develop ber computations and decimal sums and iency and accuracy. The student is expected
4.4A	add and subtract whole numbers and decimals to the hundredths place using the standard algorithm.	3.4A solve with fluency one- step and two-step problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction.
4.4B	determine products of a number and 10 or 100 using properties of operations and place value understandings.	3.4E represent multiplication facts by using a variety of approaches such as repeated addition, equal- sized groups, arrays, area models, equal jumps on a number line, and skip counting.

$\left.\begin{array}{||l|l|l||}\hline & & \begin{array}{l}3.4 F \\ \text { recall facts to multiply up to 10 by 10 with } \\ \text { automaticity and recall the corresponding } \\ \text { division facts. }\end{array} \\ \hline \text { 4.4C } & \begin{array}{l}\text { represent the product of 2 two-digit } \\ \text { numbers using arrays, area models, or } \\ \text { equations, including perfect squares through } \\ \text { 15 by 15. }\end{array} & \begin{array}{l}\text { 3.4G } \\ \text { use strategies and algorithms, including the } \\ \text { standard algorithm, to multiply a two-digit } \\ \text { number by a one-digit number. Strategies } \\ \text { may include mental math, partial products, }\end{array} \\ \hline \text { 4.4D } & \begin{array}{l}\text { use strategies and algorithms, including the } \\ \text { standard algorithm, to multiply up to a four- } \\ \text { digit number by a one-digit number and to } \\ \text { multiply a two-digit number by a two-digit } \\ \text { number. Strategies may include mental } \\ \text { math, partial products, and the } \\ \text { commutative, associative, and distributive } \\ \text { properties. }\end{array} & \begin{array}{l}\text { distributive properties. }\end{array} \\ \hline \text { 3.4G } \\ \text { use strategies and algorithms, including the } \\ \text { standard algorithm, to multiply a two-digit } \\ \text { number by a one-digit number. Strategies } \\ \text { may include mental math, partial products, } \\ \text { and the commutative, associative, and } \\ \text { distributive properties. }\end{array}\right\}$

		3.5D determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product.
4.5B	represent problems using an input-output table and numerical expressions to generate a number pattern that follows a given rule representing the relationship of the values in the resulting sequence and their position in the sequence.	3.5E represent real-world relationships using number pairs in a table and verbal descriptions.
4.5C	use models to determine the formulas for the perimeter of a rectangle $(l+w+l+w$ or $2 l+2 w)$, including the special form for perimeter of a square (4s) and the area of a rectangle ($\times \mathrm{x}$) .	
4.5D	solve problems related to perimeter and area of rectangles where dimensions are whole numbers.	
4.6	Geometry and measurement. The student app analyze geometric attributes in order to deve student is expected to:	lies mathematical process standards to p generalizations about their properties. The
4.6A	identify points, lines, line segments, rays, angles, and perpendicular and parallel lines.	3.6B use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.
4.6B	identify and draw one or more lines of symmetry, if they exist, for a twodimensional figure.	3.6B use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.
4.6C	apply knowledge of right angles to identify acute, right, and obtuse triangles.	3.6B use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories.
4.6D	classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.	3.6A classify and sort two- and three-dimensional figures, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language.

4.7	Geometry and measurement. The student applies mathematical process standards to solve problems involving angles less than or equal to 180 degrees. The student is expected to:	
4.7A	illustrate the measure of an angle as the part of a circle whose center is at the vertex of the angle that is "cut out" by the rays of the angle. Angle measures are limited to whole numbers.	
4.7B	illustrate degrees as the units used to measure an angle, where $1 / 360$ of any circle is one degree and an angle that "cuts" n/360 out of any circle whose center is at the angle's vertex has a measure of n degrees. Angle measures are limited to whole numbers.	
4.7C	determine the approximate measures of angles in degrees to the nearest whole number using a protractor.	
4.7D	draw an angle with a given measure.	determine the measure of an unknown angle formed by two non-overlapping adjacent angles given one or both angle measures.

		3.7E determine liquid volume (capacity) or weight using appropriate units and tools.
4.9	Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to:	
4.9A	represent data on a frequency table, dot plot, or stem-and-leaf plot marked with whole numbers and fractions.	3.8A summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or bar graph with scaled intervals.
4.9B	solve one- and two-step problems using data in whole number, decimal, and fraction form in a frequency table, dot plot, or stem-andleaf plot.	3.8B solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals.
4.10	Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	
4.10A	distinguish between fixed and variable expenses.	3.9A explain the connection between human capital/ labor and income.
4.10B	calculate profit in a given situation.	3.9B describe the relationship between the availability or scarcity of resources and how that impacts cost.
4.10C	compare the advantages and disadvantages of various savings options.	3.9E list reasons to save and explain the benefit of a savings plan, including for college.
4.10D	describe how to allocate a weekly allowance among spending; saving, including for college; and sharing.	$2.11 \mathrm{C}$ distinguish between a deposit and a withdrawal.
4.10E	describe the basic purpose of financial institutions, including keeping money safe, borrowing money, and lending.	3.9D explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the lender, usually with interest.

