	Grade 1 Math TEKS/SE	Prior Learning TEKS/SE
1.2	Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:	
1.2A	recognize instantly the quantity of structured arrangements.	K.2D recognize instantly the quantity of a small group of objects in organized and random arrangements.
1.2B	use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so many hundreds, so many tens, and so many ones.	K.2I compose and decompose numbers up to 10 with objects and pictures.
1.2C	use objects, pictures, and expanded and standard forms to represent numbers up to 120.	
1.2D	generate a number that is greater than or less than a given whole number up to 120 .	K. 2 F generate a number that is one more than or one less than another number up to at least 20.
1.2E	use place value to compare whole numbers up to 120 using comparative language.	K.2G compare sets of objects up to at least 20 in each set using comparative language. K. 2 H use comparative language to describe two numbers up to 20 presented as written numerals.
1.2F	order whole numbers up to 120 using place value and open number lines.	
1.2G	represent the comparison of two numbers to 100 using the symbols $>,<$, or $=$.	
1.3	Number and operations. The student applies mathematical process standards to develop and use strategies for whole number addition and subtraction computations in order to solve problems. The student is expected to:	
1.3A	use concrete and pictorial models to determine the sum of a multiple of 10 and a one-digit number in problems up to 99 .	
1.3B	use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as $2+4=[] ; 3+[]=7$; and $5=[]-3$.	K.3A model the action of joining to represent addition and the action of separating to represent subtraction.
1.3C	compose 10 with two or more addends with and without concrete objects	K.3B solve word problems using objects and drawings to find sums up to 10 and differences within 10.

1.3D	apply basic fact strategies to add and subtract within 20 , including making 10 and decomposing a number leading to a 10.	
1.3E	explain strategies used to solve addition and subtraction problems up to 20 using spoken words, objects, pictorial models, and number sentences.	K.3C explain the strategies used to solve problems involving adding and subtracting within 10 using spoken words, concrete and pictorial models, and number sentences.
1.3F	generate and solve problem situations when given a number sentence involving addition or subtraction of numbers within 20.	
1.4	Number and operations. The student applies mathematical process standards to identify coins, their values, and the relationships among them in order to recognize the need for monetary transactions. The student is expected to:	
1.4A	identify U.S. coins, including pennies, nickels, dimes, and quarters, by value and describe the relationships among them.	K.4A identify U.S. coins by name, including pennies, nickels, dimes, and quarters.
1.4B	write a number with the cent symbol to describe the value of a coin.	
1.4C	use relationships to count by twos, fives, and tens to determine the value of a collection of pennies, nickels, and/or dimes.	
1.5	Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expected to:	
1.5A	recite numbers forward and backward from any given number between 1 and 120 .	K.5A recite numbers up to at least 100 by ones and tens beginning with any given number.
1.5B	skip count by twos, fives, and tens to determine the total number of objects up to 120 in a set.	
1.5C	use relationships to determine the number that is 10 more and 10 less than a given number up to 120 .	
1.5D	represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences.	
1.5E	understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s).	
1.5F	determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation.	
1.5G	apply properties of operations to add and subtract two or three numbers.	

1.6	Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:	
1.6A	classify and sort regular and irregular twodimensional shapes based on attributes using informal geometric language.	K.6E classify and sort a variety of regular and irregular two- and three- dimensional figures regardless of orientation or size.
1.6B	distinguish between attributes that define a two-dimensional or three-dimensional figure and attributes that do not define the shape.	K.6C identify two-dimensional components of three- dimensional objects.
1.6C	create two-dimensional figures, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons.	K.6A identify two-dimensional shapes, including circles, triangles, rectangles, and squares as special rectangles.
1.6D	identify two-dimensional shapes, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons and describe their attributes using formal geometric language.	K.6D identify attributes of two-dimensional shapes using informal and formal geometric language interchangeably.
1.6E	identify three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes), and triangular prisms, and describe their attributes using formal geometric language.	K.6B identify three-dimensional solids, including cylinders, cones, spheres, and cubes, in the real world.
1.6F	compose two-dimensional shapes by joining two, three, or four figures to produce a target shape in more than one way if possible.	K.6F create two- dimensional shapes using a variety of materials and drawings.
1.6G	partition two-dimensional figures into two and four fair shares or equal parts and describe the parts using words.	
1.6H	identify examples and non-examples of halves and fourths.	
1.7	Geometry and measurement. The student applies mathematical process standards to select and use units to describe length and time. The student is expected to:	
1.7A	use measuring tools to measure the length of objects to reinforce the continuous nature of linear measurement.	K.7A give an example of a measurable attribute of a given object, including length, capacity, and weight.
1.7B	illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other.	
1.7C	measure the same object/distance with units of two different lengths and describe how and why the measurements differ.	

1.7 D	describe a length to the nearest whole unit using a number and a unit.				
1.7 E	tell time to the hour and half hour using analog and digital clocks.				
1.8	Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting information and solving problems. The student is expected to:				
1.8 A	collect, sort, and organize data in up to three categories using models/representations such as tally marks or T-charts.	K.8A collect, sort, and organize data into two or three categories.			
1.8 B	use data to create picture and bar-type graphs.	K.8B use data to create real- object and picture graphs.			
1.8 C	draw conclusions and generate and answer questions using information from picture and bar-type graphs.	K.8C draw conclusions from real-object and picture graphs.			
1.9	Personal financial literacy. The student applies one's financial resources effectively for lifetime	mathematical process standards to manage			
$1.9 \mathrm{financial} \mathrm{security} .\mathrm{The} \mathrm{student} \mathrm{is} \mathrm{expected} \mathrm{to:}$			$	$	define money earned as income.
:---					

